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Abstract. Recent advances in connectomics have been led by high-resolution reconstruc-
tion of large volumes of neural tissues using electron microscopy (EM), providing unprece-
dented insights into brain structure and function. Dendritic spines—dynamic protrusions
on neuronal dendrites—play crucial roles in synaptic plasticity, influencing learning, mem-
ory, and various neurological disorders. However, current spine analysis methods often
rely on manual annotation of subcellular features, limiting their ability to handle the com-
plexity of spines in dense dendritic networks. This paper introduces a novel automated
computational framework that integrates discrete differential geometry, machine learning,
and 3D image processing to analyze dendritic spines in these intricate environments. By
generating distributions of spine morphology from high resolution images including many
thousands of spines, our approach captures subtle variations in spine shapes, offering a
nuanced understanding of their roles in synaptic function. This framework is tested on
multiple EM datasets, with the aim of enhancing our understanding of synaptic plasticity
and its alterations in disease states. The proposed method is poised to accelerate neuro-
science research by providing a scalable, objective, and comprehensive solution for spine
analysis, uncovering insights into the role of spine geometry for neural function.

1. Introduction

Recent advances in electron microscopy and connectomics have made it possible to re-
construct astonishing large volumes of neural tissue at nanometer resolution (EM) [20,
24]. These breakthroughs have opened new opportunities for studying brain microstruc-
tures, particularly dendritic spines, dynamic protursion on dendrites where most excitatory
synapses in the brain occur. The morphology of dendritic spines—encompassing shape,
size, and density—is highly plastic and closely tied to fundamental neurological processes
such as learning and memory [5, 14, 18, 37, 50]. Changes in spine structure have also been
linked to drug abuse, environmental influences, and a wide range of neurodevelopmental,
neurodegenerative, and psychiatric disorders [11,29,48].

Accurate detection and analysis of dendritic spines in three-dimensional reconstructions is
therefore essential for advancing our understanding of synaptic organization and plasticity.
However, spine identification remains challenging due to their heterogeneous morphologies,
dense clustering, and local curvature variations. Manual annotation is highly time-intensive
and impractical for large-scale datasets, underscoring the need for automated and reli-
able computational methods. Several segmentation methods have been proposed in recent
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CURVATURE-BASED DENDRITE SEGMENTATION 2

years [3, 4, 32, 36, 38, 41, 43, 45, 47], yet challenges remain in achieving both accuracy and
scalability.

To address these challenges, we introduce a method for automated spine segmentation
that combines discrete differential geometry with deep learning. Our framework begins by
preprocessing 3D reconstructions of dendritic segments to smooth the triangulated mesh,
reduce noise, and enhance surface quality. From the resulting meshes, we extract geometric
descriptors such as Gaussian and mean curvature, along with additional features including
distances from the dendritic shaft skeleton and clustering-based descriptors. Together, these
features provide a rich representation of both local and global morphology.

Building on this geometric foundation, we developed a series of deep neural network
(DNN) architectures to evaluate how feature enrichment impacts segmentation performance.
The baseline model, DNN1, relies primarily on curvature-based descriptors. DNN2 ex-
tends this by incorporating distance-to-skeleton features, improving the separation of spines
from shafts. Finally, DNN3 integrates a set of enriched geometric and topological descrip-
tors, enabling the network to capture subtle morphological variations and complex spine
arrangements. This progression of models demonstrates how systematically incorporating
new features enhances both training convergence and segmentation accuracy.

2. Methods and materials

In this section, we employ differential geometry to design a deep neural network archi-
tecture for the segmentation of dendritic spines. As a first step, we analyze how curvature
can contribute to the characterization of dendritic morphology. Building on this analysis,
we then develop and explore a deep neural network that leverages the geometric properties
of dendrites to achieve accurate segmentation.

2.1. Dendritic Morphology Analysis Using Discrete Differential Geometry. Seg-
mentation of dendritic shafts and spines can be guided by their differential geometric prop-
erties, particularly Gaussian and mean curvature. These curvature measures capture local
shape variations that distinguish the roughly cylindrical shaft from protruding spines. How-
ever, raw curvature values obtained directly from EM reconstructions are often noisy due
to the sectioning process and mesh irregularities. To address this, we first smooth the
dendritic triangulated surface mesh using discrete differential geometry techniques, then
compute curvature values, and finally enhance these through image processing filters. This
three-step process—smoothing, curvature computation, and enhancement—provides robust
geometric descriptors that form the basis for accurate segmentation.

2.1.1. Smoothing the Triangulated Surface Mesh. To analyze the triangulated surface of the
dendritic mesh, we first address the inherent roughness in the 3D images caused by the EM
sectioning process. We apply discrete differential geometry techniques, specifically the mean
curvature (or Willmore) flow, to smooth triangular surfaces mesh.

Let nj be the normal vector to the triangle formed by the vertices Xl,Xj´1,Xj , with A
denoting the area of the triangle, and El,m representing edge vectors between neighboring
vertices Xl and Xm. The discrete mean curvature at vertex Xl may be computed as [30,
31,39]:

H “
1

2A

ÿ

m“j

El,m ˆ nm`1 ´ El,m ˆ nm. (1)
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CURVATURE-BASED DENDRITE SEGMENTATION 3

Next, we define kbend as the bending coefficient of the surface. The curvature energy over
a surface A is given by:

WbendpXq “
kbend
2

ż

A
H2pXq dA,

and the bending force is derived as the negative gradient of this energy:

FbendpXq “ ´∇XWpXq.

We smooth the curvature by evolving the surface by a gradient descent:

B

Bt
X “ FbendpXq.

Further details of the numerical computation, which follows the approach described in [46]
are provided in Appendix A. The results of performing this smoothing are illustrated in Fig-
ure 1, where we compute the Gaussian and mean curvature of a segment of spiny dendrite.
The data was obtained from high-resolution 3D EM reconstructions of the dorsal dentate
gyrus of the hippocampus in adult rats that underwent in vivo electrophysiological record-
ings, as described in [6,7]. Comparing the curvature before and after smoothing, we observe
that the processed mesh exhibits a more easily interpretable profile of the dendritic surface,
which can be exploited to improve the accuracy of spine-shaft segmentation.

Figure 1. Effect of curvature smoothing on dendritic meshes. The plots
labeled (init) and (smooth) show the initial dendritic curvature and the
curvature after smoothing, respectively. The plots labeled mean and gauss
correspond to the mean curvature and Gaussian curvature of a segment
of dendrite. Smoothing enhances the curvature profile, producing a more
easily interpretable pattern in the mesh that can be effectively leveraged to
improve segmentation accuracy. For visualization, Gaussian curvature values
are thresholded to remain within an absolute value of 45, while the mean
curvature are constrained within an absolute value of 15, thereby highlighting
the most relevant mesh faces.
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2.1.2. Gaussian and Mean Curvature. In this section, we motivate the use of Gaussian and
mean curvature values as key variables for segmenting the dendritic shaft. In the study of
dendrite morphology, we assume that dendritic shafts exhibit an approximately cylindrical
shape, from which spines are protrude.

The Gaussian curvature provides insight into the surface’s shape at different points. At
hyperbolic points, where the surface curves in opposite directions (saddle-like), the Gaussian
curvature is negative. Conversely, at elliptical points, where the surface curves uniformly in
the same direction (dome-like), the Gaussian curvature is positive. This contrasts with the
cylindrical shaft, along which the Gaussian curvature is zero. Applying these principles to
dendritic morphology, we observe that along the spine neck and at the intersection between
the neck of a spine and the dendritic shaft, the surface exhibits a saddle shape, leading to
negative Gaussian curvature. On the other hand, the spine head, with its more spherical
or dome-like structure, exhibits positive Gaussian curvature.

The mean curvature further characterizes the surface. On a concave surface, the mean
curvature is positive, while on a convex surface, it is negative. This distinction helps to
identify regions of significant shape change. For instance, at the transition from the dendritic
shaft to the spine neck, the surface is concave, leading to relatively positive mean curvature.
In contrast, the spine head, which is a convex region, has relatively negative mean curvature.

An important enhancement step in the shaft segmentation process involves boosting the
dendrite curvature values to improve the segmentation’s accuracy as we discuss next in
detail.

2.1.3. Enhancement of Curvature through Image Processing. Here, we provide an intuition
for using image processing techniques to enhance the mean and Gaussian curvature values.
The goal is to emphasize regions of the surface with significant curvature changes, which are
more likely to correspond to dendritic shafts or spines, thereby facilitating segmentation.
This forms the foundation for the machine learning methods that will be developed in the
segmentation algorithm.

First, let us define the following sigmoidal function, which is often used in image process-
ing to normalize and enhance contrast:

ζpxq “
1

1 ` expp´xq
.

This transformation maps all real values into the interval p0, 1q. For large positive x,
ζpxq Ñ 1, while for large negative x, ζpxq Ñ 0. Around x “ 0, the function has its steepest
slope, which enhances small variations near zero and makes them more distinguishable.

Applying this transformation to the mean curvature H and the Gaussian curvature K,
we obtain:

rH “ ζpaHH ` bHq, rK “ ζpaKK ` bKq, (2)

where aH, bH, aK, and bK are empirically chosen parameters used to emphasize specific
geometric features of the dendritic mesh. For example, in the neck region of a spine, we
expect relatively high negative Gaussian curvature. By appropriately choosing aK and bK,
these negative values are pushed toward the lower end of the sigmoid, making them stand
out more clearly during segmentation.

In contrast, along the cylindrical shaft, the Gaussian curvature is close to zero. Proper
tuning ensures that values near zero are mapped consistently with the shaft, so that these
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CURVATURE-BASED DENDRITE SEGMENTATION 5

regions are correctly identified. For mean curvature, which distinguishes concave and con-
vex regions, the transformation highlights transitions: concave regions (positive mean cur-
vature) are enhanced toward higher sigmoid values, while convex regions (negative mean
curvature) are mapped toward lower values.

In practice, within this paper, rH and rK will not be directly computed. The process of
obtaining them merely serves to justify the use of a deep neural network as an approximation
function to address the segmentation problem, with the sigmoidal function employed as the
output layer in the DNN.

2.2. Deep Neural Network Approach for Spine and Shaft Analysis. In the previous
section, we provided an intuitive explanation of how segmentation can be enhanced using
image processing techniques. We then introduced empirical filtering parameters that can
improve segmentation quality. Instead of manually selecting these parameters and explicitly

computing rH and rK, we can leverage Deep Neural Networks (DNNs) to learn an optimal
segmentation approximation function based on H and K. At the same time, DNNs allow
us to incorporate non-linearities that further enhance segmentation performance.

We analyze three different DNN architectures. The first network is designed to support
the second by assisting in the extraction of the shaft skeleton, while the third network relies
solely on external Python libraries for skeletonization. Machine learning methods have
also been employed for dendrite segmentation of dendritic spines obtained from confocal
reconstruction images using Convolution Neural Networks CNNs [43]. In this work, we
adopt a simple DNN architecture inspired by the physics-informed neural network (PINN)
model [17,19,25,27,28,33–35], which has been widely applied to approximate ordinary and
partial differential equations. These models leverage their well-known ability to serve as
universal function approximators [17]. Given the geometrical characteristics of the dendritic
triangular mesh, this approximation capability of DNNs constitutes a fundamental tool in
our algorithm. Here, we present the architectures that produced the best results among the
different trials.

2.2.1. Deep Neural Network (DNN1) using the Gaussian and Mean Curvature. As for the
sigmoidal function (2) introduced in the previous section, various model parameters require
fine-tuning to enhance the shaft segmentation process. Rather than manually selecting

these parameters and computing rH and rK, we train a deep neural network in a two-step
procedure.

We first train a deep neural network, denoted as DNN1, whose architecture is illustrated
in Fig. 2. The input layer receives both the mean curvature H and the Gaussian curvature
K values of the dendritic triangular mesh (after smoothing), together with their squared
terms to capture higher-order variations. The input features are preprocessed such that
the Gaussian curvature values and their squared terms are thresholded to remain within an
absolute value of 45. Specifically, for K “ pK1,K2, . . . ,Kmq, we enforce Ki P r´45, 45s. We
then compute K2

i and threshold its value to the range r0, 45s. Similarly, the mean curvature
values and their squared terms are constrained within an absolute value of 15, following the
same procedure as in the Gaussian curvature case.

These thresholds are applied because curvature values can sometimes become very large,
and such extreme values do not significantly improve prediction accuracy but can instead
cause instability during training and inference. To further reduce instability, any NaN
values, if present, are replaced with the average of the corresponding curvature values.
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CURVATURE-BASED DENDRITE SEGMENTATION 6

The network consists of four hidden layers, each containing fifty neurons with ReLU
activation functions to introduce non-linearity [25]. The output layer employs a Sigmoid
activation function, as described in Section 2.1.3, to classify vertices into dendritic shafts
and spines.

The segmentation produced by DNN1 is not fully satisfactory, as regions within spines
are sometimes misclassified as part of the shaft. This misclassification arises because certain
spines regions exhibit relatively flat curvature, making them appear similar to shaft regions.
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Figure 2. Deep Neural Network (DNN1) architecture used the dendrite
shaft. The input layer consists of the mean curvature H and the Gaussian
curvature K, computed after smoothing, and their squares. The network
includes four hidden layers, each with fifty neurons and ReLU activation
functions. The output layer employs a sigmoidal activation function.

2.2.2. Skeletonization. In this section, we describe the process used to obtain the skele-
tonization of dendritic meshes. is an image processing technique that reduces binary shapes
to thin, single-pixel-wide lines while preserving their topological structure and connectiv-
ity [26,51].

The first step in building the skeleton is to ensure that the mesh is watertight, meaning
that it forms a completely closed surface with no gaps, holes, or disconnected edges. A
watertight mesh guarantees a well-defined interior and exterior, which is essential for reliable
geometric processing and for preserving the topological structure during skeletonization. To
achieve this, we wrap the existing mesh using the algorithm described in Appendix B. This
procedure converts the surface into a uniformly sampled point cloud, estimates and orients
normals, and then applies Poisson surface reconstruction to generate a closed, watertight
representation.

Once a watertight mesh is obtained, we compute its skeleton using the scikit-image

skeletonization package, which implements algorithms from [26,51]. Further implementation
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CURVATURE-BASED DENDRITE SEGMENTATION 7

details are provided in Appendix B. This simplified representation captures the essential
branching geometry of dendrites for subsequent segmentation and morphological analysis.

2.2.3. Deep Neural Network (DNN2) using Shaft Skeleton. We can enhance dendritic spine–shaft
segmentation by incorporating the shaft skeleton. This involves using the distance between
the shaft skeleton vertices and the dendritic branch as an additional input to the DNN.
For this purpose, we use the shaft segmented with DNN1 together with the skeletonization
procedure outlined in Section 2.2.2.

To begin, we consider the shaft-segmented meshes obtained from DNN1. Since this
mesh results from the dendritic branch after spine regions have been segmented, it is no
longer watertight. Therefore, we apply the procedure described earlier to make the mesh
watertight. Once the shaft mesh skeletonization is completed, we compute the distance D
between the shaft skeleton and the dendritic branch mesh vertices. Here, for each vertex
Xl, l P t1, 2, . . . , nu in the dendritic triangular mesh with n vertices, and tV1,V2, . . . ,Vvu

the set of shaft skeleton vertices, we compute the Euclidean norm:

Dl “ min
1ďjďv

}Vj ´ Xl}2 , D “
`

D1,D2, . . . ,Dn

˘

. (3)

With this additional information, we develop an improved deep neural network, DNN2,
whose architecture is shown in Fig. 3. This model is similar to DNN1, except that it
incorporates the new input feature. As in the earlier model, the input layer receives both
the Gaussian and mean curvature values of the dendrite, along with the squared values of
these curvatures as additional features. The network consists of four hidden layers, each
containing fifty neurons with ReLU activation functions to introduce non-linearity. The
output layer employs a Sigmoid activation function, as discussed in Section 2.1.3, to classify
vertices into dendritic shafts or spines.

2.2.4. Dendrite Spine-Shaft Segmentation Using Dendritic Branch Regions (DNN3). To
improve segmentation accuracy, we introduce a deep neural network (DNN3) that incor-
porates regional information from dendritic branch segments. These segments are derived
from the dendrite skeleton, which serves as a structural reference for spatial organization.

For this model, once the skeleton is extracted, we compute the shortest distance from
each mesh vertex to its nearest skeleton point. These distances are then clustered using
the K-means algorithm to partition the dendritic mesh into multiple regions. This regional
segmentation enables us to distinguish between different parts of the dendrite shaft, spine
neck, and spine head—regions that are critical for accurate classification.

To capture variations in dendritic morphology, we apply K-means clustering with mul-
tiple values of k. We denote these segmentation features by Sk, where k P t2, 3, . . . , 10u

corresponds to the number of clusters. In particular, the value of each feature Sk is given
by the corresponding cluster label. Therefore this model incorporates 9 additional scalar
features. In this study, we explore values of k ranging from 2 to 10 to provide a multi-scale
representation of regional structure.

In addition to these region-based segmentation features, we incorporate Gaussian cur-
vature and its squared value as geometric descriptors. These measures are particularly
effective for identifying neck regions, as discussed in earlier sections. We intentionally ex-
clude mean curvature as we have observed that the mean curvature input increases the
probability of misclassifying all dome-like regions as spines, leading to false positives. By
omitting mean curvature and focusing on more discriminative features, DNN3 achieves
improved segmentation performance compared to the baseline models.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2025. ; https://doi.org/10.64898/2025.12.04.692360doi: bioRxiv preprint 

https://doi.org/10.64898/2025.12.04.692360
http://creativecommons.org/licenses/by/4.0/


CURVATURE-BASED DENDRITE SEGMENTATION 8

H

K

H2

K2

D

...
...

...
...

Output

De
nse

(5
Ñ

50,
Re

LU
)

De
nse

(50
Ñ

50,
Re

LU
)

De
nse

(50
Ñ

50,
Re

LU
)

De
nse

(50
Ñ

50,
Re

LU
)

Inp
ut

De
nse

(50
Ñ

1,
Sig

mo
id)

K

K2

S2

...
...

S10

...
...

...
...

Output

De
nse

(11
Ñ

50,
Re

LU
)

De
nse

(50
Ñ

50,
Re

LU
)

De
nse

(50
Ñ

50,
Re

LU
)

De
nse

(50
Ñ

50,
Re

LU
)

Inp
ut

De
nse

(50
Ñ

1,
Sig

mo
id)

Figure 3. The top diagram illustrates the architecture of the deep neural
network (DNN2), which improves upon DNN1. This model closely resem-
bles the previous network but incorporates an additional input feature: the
distance D between the central curve of the shaft (computed using DNN1)
and the mesh vertices. The output layer employs a sigmoid activation func-
tion, consistent with the design of the earlier network. The bottom diagram
shows the architecture of the deep neural network (DNN3) with additional
input features. This model extends the previous design by enriching the in-
put layer with multiple geometric and topological descriptors, including the
Gaussian curvature and its squared value, as well as segmentation descrip-
tors Sk obtained from K-means clustering of the shortest distances between
mesh vertices and the dendrite skeleton. As in the earlier models, the output
layer uses a sigmoid activation function.
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Figure 4. Additional features used in the DNN training. The plot labeled
gauss´sq and mean´sq show respectively the square of the Gaussian and
mean curvature of the dendrite. The plot labeled length sh. skl. vert. indi-
cates the distance from the shaft skeleton to the dendritic mesh vertices,
denoted by D. The plot labeled kmean´k illustrates the k-subdivision from
K-means clustering, corresponding to the set Sk.

2.3. Loss Function. We use the binary cross-entropy (BCE) to compute the loss function,
and its derivation is presented below.

Let us consider a set of m dendritic meshes, denoted as D “ pD1,D2, . . . ,Dmq, where
each mesh Di consists of ni vertices. For the training set, we assume that each Di has
a ground-truth classification matrix Yi P t0, 1uniˆ2, which represents the classification of
vertices in Di in one-hot encoding, such that:

Yi,j “

#

p0, 1q if vertex j of Di belongs to the dendritic shaft,

p1, 0q otherwise.

We define Y “ pY1,Y2, . . . ,Ymq as the set of all annotation matrices. Next, we define
the set of mean curvature vectors for all dendritic meshes as H “ pH1,H2, . . . ,Hmq and
the set of Gaussian curvature vectors as K “ pK1,K2, . . . ,Kmq. For each mesh Dj , j P

t1, 2, . . . ,mu, the mean curvature vector is given by Hj “ pH1,j ,H2,j , . . . ,Hnj ,jq, and the
Gaussian curvature vector by Kj “ pK1,j ,K2,j , . . . ,Knj ,jq, where Hi,j and Ki,j denote the
mean and Gaussian curvatures of Dj at vertex i, for i P t1, 2, . . . , nju.

Additionally, we define the distance vector D “ pD1,D2, . . . ,Dmq, representing the dis-
tances between the central curve and the vertices, as well as additional structural descriptors
Sk, where k P t2, 3, . . . , 10u. For each mesh Dj , we write Sk

j “ pSk
1,j ,S

k
2,j , . . . ,S

k
nj ,j

q.

We now define the feature vector for vertex i of mesh j as

Zi,j “
`

Hi,j ,H
2
i,j ,Ki,j ,K

2
i,j ,Di,j ,S

2
i,j ,S

3
i,j , . . .

˘

,
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and the corresponding feature matrix for dendritic mesh Dj as

Zj “
`

Hj ,H
2
j ,Kj ,K

2
j ,Dj ,S

2
j ,S

3
j , . . .

˘

.

Our objective is to find a function

fθ : Zj ÞÑ Yj P r0, 1snjˆ2, @j P t1, 2, . . . ,mu,

that best approximates the ground-truth classification by minimizing the following loss
function:

L “ min
θ

}fθpZq ´ Y} ,

where } ¨ } denotes an appropriate norm measuring the discrepancy between the predicted
and actual classifications. In particular, we use a weighted sum of the binary cross-entropy
(BCE), which encourages a more balanced optimization process. The binary cross-entropy
formula is given by:

BCEpy, ŷq “ ´ py logpŷq ` p1 ´ yq logp1 ´ ŷqq .

The final loss function is defined as:

Lθ “
1

m

m
ÿ

j“1

˜

1

nj

nj
ÿ

i“1

´

BCEpYi,j , fθpZi,jqq ¨ wj

¯2
¸

.

Here the weights wj is empirically determined.

2.4. Spine and Shaft Detection. After the training step of the algorithm, the next
stage of spine–shaft segmentation involves applying the model for classification as well as
performing additional post-processing steps to first isolate the shaft and then the spines.
In this section, we analyze the processes required to obtain a reliable segmentation.

2.4.1. Grouping Dendritic Mesh Parts into Connected Vertices. After training the DNN,
the first step is to classify the vertices of a given test dendritic mesh into shaft and spine
categories. The resulting classification can then be grouped into connected components of
spine vertices and shaft vertices.

As a consequence of the sigmoidal activation function applied to the final layer, the output
of the DNN is a probability matrix Y “ fθpZq P r0, 1snˆ2, where each row corresponds to a

vertex and contains the probabilities of that vertex being classified as a spine, rXspine (first

column greater than the second), or a shaft, rXshaft (second column greater than or equal to
the first). Formally, we define:

rXspine “ tXi P D | bYpi, 1q ą aYpi, 0qu,

rXshaft “ tXi P D | bYpi, 1q ď aYpi, 0qu.
(4)

Here a, b are empirical parameters to be set. Next, we describe how to group the predicted
dendritic parts—classified as either spine or shaft—into subgroups of connected compo-
nents. Let each vertex Xi have an associated set of neighboring vertices denoted by Ni:

Ni “ tXj | Xj is in the 1-ring neighborhood of Xiu .

We define a connected group of vertices Gi Ď D such that for any pair Xp,Xq P Gi, there

exists a path of vertices Xi1 ,Xi2 , . . . ,Xim P rXpart satisfying:

Xi1 “ Xp, Xim “ Xq, Xiℓ P Niℓ´1
for all ℓ “ 2, . . . ,m.
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Here, rXpart denotes the set of vertices classified as a given part type—either rXspine for spines

or rXshaft for shafts. The subset of part-classified vertices within this group is then:

rY i
part “

!

Xj P rXpart

ˇ

ˇ

ˇ
Xj P Gi

)

.

Finally, the complete set of part-classified vertices rYpart can be decomposed into disjoint
set of connected vertices, where connectivity is defined by neighborhood overlap:

rYpart “

!

rY i
part

ˇ

ˇ

ˇ
Xi P rXpart

)

.

2.4.2. Spine–Shaft Detection. Using the subgroups defined above of connected components,

we now define the segmentation of the dendritic mesh into spines and shaft. Let rYshaft denote
the set of connected components classified as shaft. In practice, some of these components
may actually be parts of spines, so it is crucial to separate them from the true shaft set for
accurate segmentation.

To achieve this, we identify the largest connected component in rYshaft and designate it as

the entire shaft. All remaining connected components in rYshaft are then assumed to belong
to spines.

The set of vertices belonging to the shaft is defined as:

Y0
shaft “ max

rYi
shaftĂ rXshaft

ˇ

ˇ

ˇ

rY i
shaft

ˇ

ˇ

ˇ
,

where |¨| denotes the cardinality of the set.
Once the entire shaft is defined, spine segmentation proceeds by removing the shaft ver-

tices from the dendrite vertex set, reclassifying them as spine vertices and then reapplying
the connected-component grouping process described in Section 2.4.1 to the remaining ver-
tices. The set of segmented spines is defined as:

Yspine “
␣

Y i
spine

ˇ

ˇ Xi P Xspine

(

,

where each individual spine component is given by:

Y i
spine “

␣

Xj P DzY0
shaft

ˇ

ˇ Xj P Gi

(

.

2.5. Dataset Description. This section describes the datasets of dendritic segments used
for training and testing our algorithm. To mitigate overfitting, the training and testing sets
were independent and originate from different animals. This separation ensures that the
model learns generalizable features of dendritic structures rather than memorizing patterns
specific to a single specimen.

The training dataset comprises six high-resolution 3D EM reconstructions of the dorsal
dentate gyrus in the hippocampus of adult rats. These animals underwent in vivo electro-
physiological recordings, as described in [6, 7].

For testing, we used data from the axon–spine coupling study, which includes a complete
nanoconnectomic 3D reconstruction of hippocampal neuropil obtained via serial EM [15].
This dataset contains four independent annotations—two performed by each of two an-
notators [2]—providing detailed segmentation of dendritic spines. Out of 151 meshes, we
selected 28 spiny dendritic branches for testing based on annotation consensus. Specifically,
we included only those meshes where two or more annotators agreed on the presence of at
least one dendritic spine. Additionally, for each spine mesh identified by the annotators, we
retained only those meshes that were consistently labeled as spines by at least two of the
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selected annotations. This ensured that the testing set reflected a high-confidence subset of
spiny dendritic structures.

It is important to note that some structure exhibiting spine-like morphology were not
annotated as spines in the test set for two reasons. First, biologically, the presence of a
synaptic area in the spine head is essential for defining a spine. Thus, even if a mesh
appears spiny, it is not considered a spine if no synapse is present. Second, some meshes
were excluded due to incomplete reconstruction—parts of the spine may have been cut off
or lost during imaging.

In contrast, the training dataset does not apply as strict criteria for spine identification as
the test set. As a result, the testing dataset introduces additional segmentation challenges
that are not reflected in the training data. Our algorithm does not explicitly account for
these differences, which may influence performance.

For the training dataset, each spine was stored as an individual .obj file in watertight
format. The mesh corresponding to the shaft of each dendritic segment was provided
separately, along with the complete mesh of the dendritic segment. Because spine and
shaft meshes were stored independently, we wrapped the spines and shaft with a tight
mesh from the exterior in order to generate a unified dendritic mesh using the algorithm in
Appendix B. We then used the independent spine meshes to label the constituent parts of
the new wrapped dendritic mesh. To achieve this, we employed a KD-Tree–based nearest-
neighbor search to map spine vertices to the wrapped dendritic mesh. Specifically, for each
set of spine vertices in the individual dataset vertices, we queried a KD-Tree built from
the wrapped dendritic mesh vertices to identify all branch vertices within a radius threshold
rth:

vertices appr “ list pset pnp.concatenate pkdtree.query radiuspvertices, rthqqqq .

Here, query radius returns the indices of dendrite mesh vertices that lie within a distance
rth of each spine vertex. By aggregating these indices, we obtain the set of dendrite vertices
corresponding to the annotated spine regions on the wrapped mesh. This mapping step
allows us to merge the spine and shaft meshes into a single labeled dendritic mesh, which
is then used for both training and validation.

3. Results

This section presents a comprehensive evaluation of our algorithm’s performance in seg-
menting dendritic shafts and spines. We first describe the identification of dendritic shafts
using geometric properties and a neural network-based approach. We then assess the ability
of the algorithm to segment dendritic spines, highlighting both its strengths and limitations.

Figure 7 illustrates the predicted dendritic shafts and spines from datasets from Kasthuri
et al. [20], demonstrating that our method successfully identifies spines along the dendritic
shaft by leveraging geometric properties such as Gaussian and mean curvature. However,
misclassification can occur when the dendritic structure deviates significantly from the ide-
alized cylindrical shape, underscoring the need for further improvements to the method.

To make these methods widely accessible, we have posted an open-source code repository
on GitHub: GitHub:curvature-based-dendrite-segmentation.

3.1. DNN Prediction Results Analysis. In this section, we present and analyze the
prediction results of the three DNNs, DNN1, DNN2, and DNN3 (Figures 2 and 3). The
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methodology is outlined in Section 2.2.4, and here we focus on two key evaluation criteria:
the training loss and the Jaccard index (Intersection over Union, IoU).

All models were trained using the Adam optimizer, which provides efficient and adaptive
gradient-based optimization [23]. To promote generalization and reduce overfitting, both L1
and L2 regularization were applied to the hidden layers. This dual regularization strategy
encourages sparsity in the learned weights while penalizing large parameter values [16, 40],
thereby improving robustness across diverse inputs. The DNN architecture was built using
TensorFlow (v2.16.2) [1], and training was performed for approximately 1500 epochs for
each model.

The training loss curves for the three models are shown in Fig. 5. Among the three,
DNN3 achieves the best convergence, reaching a minimum loss of approximately 0.70.
DNN2 also converges well, though slightly less effectively than DNN3, while the baseline
architecture DNN1 shows the poorest convergence, with higher residual loss throughout
training. These results highlight the importance of the additional features and architectural
refinements introduced in DNN2 and DNN3 for improving optimization stability.

To quantitatively assess segmentation accuracy, we computed the IoU between predicted
and annotated vertices for both the dendritic shaft and spines, on both the training and
test sets. The IoU curves are presented in Fig. 6. For DNN2, the IoU converges to average
values of approximately 0.70 for the shaft and 0.81 for the spines, consistent with its superior
loss convergence. DNN3 achieves comparable performance, while DNN1 lags behind with
average IoU values of 0.55 for the shaft and 0.75 for the spines. Importantly, the similarity
between training and testing curves across all models indicates good generalization and
minimal overfitting.

Overall, these results demonstrate a clear progression in performance from DNN1 to
DNN3. The incorporation of additional geometric and topological features in DNN2 and
DNN3 significantly improves both convergence and segmentation accuracy, underscoring
the value of feature enrichment in dendritic spine detection.

3.2. Dendritic Spine Detection Analysis. Following dendritic shaft segmentation, we
applied the spine detection algorithm described in Section 2.4 to identify spines. For each
detected spine, we computed the IoU to evaluate segmentation accuracy. In addition, we
calculated the IoU for the union of all detected spines to assess overall performance. We
then computed accuracy, precision, recall, and F1-score to further quantify classification
performance.

3.2.1. Qualitative Evaluation. The segmentation results obtained using the DNN models
are shown in Fig. 7. A clear qualitative improvement can be observed when moving from
DNN1 to the more advanced architecturesDNN2 andDNN3. WhileDNN1 often misclas-
sifies regions of the shaft as spines, leading to fragmented and noisy segmentation, DNN2

reduces these errors by incorporating additional geometric features such as the distance to
the shaft skeleton. This results in a more coherent representation of the dendritic shaft
and a better separation between shaft and spine regions. Finally, DNN3 further refines the
segmentation by integrating enriched geometric and topological descriptors, which allows it
to capture subtle curvature variations and complex spine clusters more effectively. Visually,
this is reflected in the reduced number of misclassified vertices and the closer alignment of
the predicted segmentation with the expert annotation. These qualitative observations are
consistent with the quantitative improvements reported in Tables 1, in which DNN2 and
DNN3 outperform DNN1 across all evaluation metrics.
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Figure 5. Training loss curves for the three deep neural network models.
The red square markers, blue circular markers, and black star markers corre-
spond to the loss curves ofDNN1, DNN2, andDNN3, respectively. Among
the three models, DNN3 achieves the best convergence, reaching a minimum
loss of approximately 0.7. In contrast, the basic architecture DNN1 shows
the poorest convergence behavior, with higher residual loss throughout train-
ing. These results highlight the effectiveness of the additional features and
architectural refinements introduced in DNN2 and DNN3 for improving
model optimization and stability.

3.2.2. Quantitative Evaluation and Analysis. We evaluated our algorithm using two com-
plementary strategies. First, we computed the IoU for each detected spine by comparing it
to the annotated segmentation. Second, we computed the IoU for the union of all detected
spines compared to the union of the annotated spines. This union-based IoU provides a
fairer evaluation of complex spine groups, acknowledging that our algorithm is not specif-
ically designed to segment these structures individually. To further assess classification
performance, we also computed accuracy, precision, recall, and F1-score for three deep neu-
ral network models, denoted as DNN1, DNN2, and DNN3. The results are summarized
in Table 1.

Under the per-spine IoU criterion, DNN1 achieves an accuracy of 0.580, precision of
0.776, recall of 0.696, and an F1-score of 0.734. While its precision is relatively high, the
lower recall indicates that it misses a notable fraction of true spines. DNN2 improves upon
this baseline, with slightly higher accuracy (0.603), recall (0.732), and F1-score (0.756),
suggesting a more balanced performance. DNN3 achieves the strongest results under this
criterion, with the highest accuracy (0.644), recall (0.767), and F1-score (0.784), demon-
strating its effectiveness in capturing spines more reliably.
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Figure 6. Intersection over Union (IoU) curves obtained during training
of the three neural network models. Each plot compares the annotated
vertices with the predicted vertices for the dendritic shaft (red curves) and
the spines (blue curves). The star markers represent IoU values computed
on the training datasets, while the square markers correspond to the testing
datasets. Overall, DNN2 achieves the best performance, with average IoU
values of approximately 0.70 for the shaft and 0.81 for the spines, consistent
with its superior loss convergence shown in Fig. 5. In contrast, DNN1

performs the worst, with average IoU values of 0.55 for the shaft and 0.75
for the spines. The similarity between training and testing curves indicates
that all three models generalize well without significant overfitting.

When evaluated using the union-based IoU, all models show improved performance across
metrics. This reflects the fact that aggregating spines into a union provides a fairer evalua-
tion of clustered structures. DNN1 improves modestly to an accuracy of 0.605 and F1-score
of 0.754. DNN2 also benefits, reaching an accuracy of 0.625 and F1-score of 0.752. The
most substantial improvement is observed for DNN3, which achieves an accuracy of 0.719,
recall of 0.867, and an F1-score of 0.837. This indicates that DNN3 is particularly effective
at capturing spines in dense or clustered regions without sacrificing precision.

Overall, these results demonstrate a clear progression in segmentation quality from
DNN1 to DNN3. While DNN1 provides a reasonable baseline with strong precision but
weaker recall, DNN2 offers a more balanced trade-off, and DNN3 consistently outperforms
both models. The union-based evaluation highlights that DNN3 is especially well-suited
for handling complex spine groups, offering the best overall balance between precision and
recall.

3.3. Dendrite Spine Segmentation without Smoothing. In the segmentation of den-
drite triangular meshes, curvature smoothing is typically required. However, when the num-
ber of vertices is large—more than 200,000—the process becomes computationally expen-
sive, taking more than 20 hours to produce a smooth mesh. We note that by using DNN3,
the computational time can be reduced by performing segmentation without smoothing,
while still achieving a level of accuracy comparable to that obtained with smoothing.
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Figure 7. Comparison of segmentation results obtained using DNN1,
DNN2, and DNN3. The first three panels show the predicted segmen-
tation results from each network, while the last panel displays the expert
spine annotation used as ground truth for evaluation. In the meshes, red
vertices indicate correct predictions that match the annotation, sky blue
vertices represent shaft regions misclassified as spines, and yellow vertices
represent spine regions misclassified as shaft. DNN1 produces noisier re-
sults with more misclassifications, particularly in clustered regions. DNN2

improves segmentation by reducing shaft-to-spine misclassifications, while
DNN3 demonstrates the most accurate classification overall, with fewer er-
rors and a closer match to the expert annotation.

We evaluated the effectiveness of curvature smoothing with DNN3 on both the training
and test datasets and compared the accuracy. The computed accuracy for the test dataset is
0.658 (with and without smoothing), while for the training dataset it is 0.704 with smoothing
and 0.780 without smoothing. These results show that smoothing the curvature of the
triangular mesh when using DNN3 is unnecessary, and segmentation may even perform
better without it.

This phenomenon may be due to the fact that the nine region-based segmentation features
Sk enable the DNN to detect the neck area without requiring an enhanced curvature profile
produced by smoothing. When we tested the same process on other DNN models, the
accuracy was zero in both cases.

3.4. Application to Dendritic Surface Meshes with Many Vertices. We next use
our algorithm to segment the spines of a dendritic mesh dataset containing a large number
of vertices and multiple branches.
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Model Criterion Accuracy Precision Recall F1-score

DNN1
IoU 0.580 0.776 0.696 0.734

Union of IoU 0.605 0.784 0.726 0.754

DNN2
IoU 0.603 0.774 0.732 0.756

Union of IoU 0.625 0.780 0.759 0.752

DNN3
IoU 0.658 0.803 0.785 0.794

Union of IoU 0.721 0.817 0.860 0.838

Table 1. Performance metrics for three deep neural network models
(DNN1, DNN2, and DNN3) evaluated on dendritic spine segmentation us-
ing two criteria: per-spine Intersection over Union (IoU) and Union of IoU.
Under the IoU criterion, DNN3 achieves the best overall performance with
the highest accuracy (0.658) and F1-score (0.794), followed by DNN2 (ac-
curacy 0.603, F1-score 0.756) and DNN1 (accuracy 0.580, F1-score 0.734).
When evaluated with the Union of IoU, all models show improved re-
sults, with DNN3 again outperforming the others (accuracy 0.721, F1-score
0.838). Precision remains consistently high across models and criteria, in-
dicating a low incidence of false positives. These results highlight that the
Union of IoU provides a more comprehensive and biologically meaningful
assessment of segmentation quality, particularly in dense dendritic environ-
ments.

In particular, the dataset we study is from the reconstruction of a sub-volume of mouse
neocortex [20]. We analyzed a dendritic mesh with 5,387,879 vertices and 10,777,005 faces.
This dendritic mesh is about 13.42 times larger than the training dataset used in the previous
sections (401,371 vertices and 802,750 faces). While most of the training and testing datasets
contain only one main dendritic branch with attached spines, this dataset has nine branches
with multiple spines. This highlights how much more complex this dataset is compared to
the training and testing data.

Because this dataset is relatively large, the segmentation process differs slightly from
that used in training. Computations were performed on a MacBook Pro with an Apple M4
Max chip and 64 GB of memory. When we attempted to segment the large dendritic mesh
directly, the process failed due to computational constraints. Therefore, we reduced the
size of the mesh using the simplification algorithm described in Appendix B. The mesh was
simplified to nearly the size of the largest training dataset, given (about 449,109 vertices
and 900,000 faces), and we then proceeded with the same testing process as before.

The segmentation results are shown in Figure 9. We observe that DNN3 achieves the
best performance, correctly labeling most spines based on visual inspection. However, it
mislabels a fraction of one sub-branch as spines, as seen in the bottom panel (C). Overall,
most spines are well classified, and the sub-branch misclassification may be due to the
proximity of the sub-branch mesh to the skeleton at the branching point.

In contrast, DNN1 also performs well, correctly identifying most spines and rarely misla-
beling sub-branches as spines. Closer inspection of the bottom panel (A) shows that DNN1

often misclassifies spine necks as shaft, and in some cases entire spine meshes were misla-
beled as shaft. This limitation may arise from the lack of spatial information, as Gaussian
and mean curvature alone provide insufficient cues for accurate segmentation.
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Finally, DNN2 demonstrates the weakest performance. It correctly labels spines only
on one of the nine sub-branches, failing on the remainder. This poor performance may be
attributed to the shaft–skeleton distance, Gaussian curvature, and mean curvature features
being insufficient to reliably identify spine neck regions in this complex dataset.

3.5. Dendritic Spine Morphologic Parameters. In this section, we use the segmenta-
tion results obtained from our algorithm to compute several morphological parameters of
the dendritic meshes in both the training and testing datasets. These parameters include
the neck diameter, head diameter, and spine length.

The computation of head and neck diameters was performed using the spine skeleton.
This skeleton was obtained by identifying the closest point of the triangular mesh skeleton
to each vertex of the segmented spine mesh. To determine the neck and head diameters,
we considered each segmented spine’s triangular mesh. For each vertex, we computed the
shortest distance to its nearest skeleton point, as described in equation 3, while computing
D. This procedure yielded a thickness profile along the spine. The neck radius was then
defined as the minimum of these computed averages, starting from the skeleton vertices
closest to the dendritic shaft. Conversely, the head diameter was defined as the maximum
computed distance, measured from the skeleton vertices at the farthest point from the shaft.

Additionally, to compute the length of the spine, we used the spine skeletonization and
interpolated additional points along the skeleton using a spline technique. This interpolation
increases the accuracy of the computed distances by smoothing and interpolating along the
dendritic spine skeleton [9, 10, 44]. Additional details are provided in Appendix C. The
spine length was then computed as the sum of Euclidean distances between consecutive
interpolated points:

L “

N´1
ÿ

i“1

}Vi`1 ´ Vi}2,

where Vi denotes the i-th interpolated vertex.
The distribution of morphological parameters in the training and large dendritic mesh

datasets is shown in Figure 8. In the first column, the head diameter is plotted against the
neck diameter of dendritic spines, while in the second column the spine volume is plotted
against the spine area, with a colormap encoding spine length. For clearer visualization,
some outliers were removed. Marginal histograms of head and neck diameters are also
included to facilitate interpretation.

Quantitatively, the segmented training dataset contains 210 spines, with an average neck
diameter of 0.166˘0.0969µm, an average head diameter of 0.512˘0.101µm, and an average
spine length of 1.35 ˘ 0.694µm. The average spine volume is 0.122 ˘ 0.121µm3 and the
average spine area is 2.30 ˘ 1.83µm2, yielding an average area-to-volume ratio of 12.9.
Importantly, the relationship between spine volume and area is very strong, as reflected by
a high coefficient of determination (R2 “ 0.916).

In contrast, the segmented large dendritic mesh dataset contains 562 spines, with an
average neck diameter of 0.148˘ 0.0787µm, an average head diameter of 0.661˘ 0.164µm,
and an average spine length of 5.57˘5.34µm. The average spine volume is 0.090˘0.085µm3

and the average spine area is 1.53 ˘ 1.15µm2, yielding an average area-to-volume ratio of
13.9. Here too, the relationship between spine volume and area remains strong, with a
coefficient of determination of R2 “ 0.847.
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Figure 8. Distribution of morphological parameters in the training dataset
and in the large dendritic mesh dataset, obtained using DNN3. In the
first column, head diameter is plotted against neck diameter of dendritic
spines, while in the second column spine volume is plotted against spine
area. A colormap encodes spine length. The segmented training dataset
contains 210 spines, with an average neck diameter of 0.166 ˘ 0.0969µm,
an average head diameter of 0.512 ˘ 0.101µm, and an average spine length
of 1.35 ˘ 0.694µm. The average spine volume is 0.122 ˘ 0.121µm3 and the
average spine area is 2.30˘1.83µm2, yielding an average area-to-volume ratio
of 12.9 with a coefficient of determination R2 “ 0.916. The segmented large
dendritic mesh dataset contains 562 spines, with an average neck diameter
of 0.148 ˘ 0.0787µm, an average head diameter of 0.661 ˘ 0.164µm, and
an average spine length of 5.57 ˘ 5.34µm. The average spine volume is
0.090 ˘ 0.085µm3 and the average spine area is 1.53 ˘ 1.15µm2, yielding
an average area-to-volume ratio of 13.9 with a coefficient of determination
R2 “ 0.847.

4. Discussion

Despite its overall promise, our algorithm encounters challenges in segmenting spines
with complex morphologies and spatial arrangements. Below, we discuss three key failure
cases, illustrated in Figures 10. The consistently high precision suggests that when a spine
is detected, it is almost always correct (few false positives). However, the moderate recall
for IoU alone indicates that some spines are missed (false negatives), potentially affect-
ing downstream morphological analyses. The substantial performance improvement with
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Figure 9. Comparison of segmentation results obtained using DNN1,
DNN2, and DNN3 on a large dendritic mesh from [20]. In the figure,
blue indicates the shaft mesh (denoted as sh), while red highlights the seg-
mented spines (denoted as sp). The top panel shows thatDNN1 andDNN3

achieve the most accurate segmentation, correctly labeling the majority of
spines across the dendritic mesh. In contrast, DNN2 incorrectly labels nine
subbranches of the dendrite segment as spines. Three boxed regions (A–C)
in the top panel highlight misclassified areas, which are shown in detail in
the corresponding bottom panels. Panel (A) reveals spine meshes mislabeled
as shaft by DNN1 (indicated by the box and circle). Panels (B) shows den-
dritic subbranches mislabeled as spines byDNN2, while Panel (C) illustrates
similar mislabeling by DNN3.

union-based IoU suggests that a more inclusive segmentation strategy enhances detection
reliability.
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4.1. Limitations in Spine Group Segmentation. Dendritic spines frequently appear
in dense clusters, complicating their segmentation. These spine groups are two or more
spines whose vertices are directly connected, and after the shaft is removed they still group
together. Figure 10 shows a region containing tightly packed spines where the algorithm
struggles to distinguish individual structures due to overlapping curvature features. This
limitation highlights the need for improved clustering-based segmentation techniques or the
integration of additional geometric descriptors capable of differentiating individual spines
in high-density regions.

4.1.1. Misclassification of Dendritic Shaft Regions as Spines. Another failure mode involves
the erroneous classification of dendritic shaft regions as spines, as depicted in Figure 10[F].
This misclassification likely stems from local curvature variations that resemble spine-like
features. To mitigate this issue, we propose the incorporation of spatial continuity con-
straints, contextual neighborhood information, or multi-scale curvature analysis to better
distinguish dendritic shafts from true spine structures.

4.1.2. Scalability and Large Dataset Limitations. A further limitation arises from the scale
of the datasets used in training and evaluation. High-resolution 3D EM reconstructions
of dendritic segments generate extremely large meshes, often containing millions of ver-
tices. Processing such datasets requires substantial computational resources, both in terms
of memory and runtime. This constraint limits the feasibility of applying our method to
very large-scale reconstructions or to entire brain regions without significant preprocessing
or downsampling. Moreover, the need to balance mesh resolution with computational ef-
ficiency may lead to the loss of fine structural details, particularly in thin spine necks or
small protrusions. Addressing this limitation will require the development of more efficient
algorithms, parallelized implementations, or hierarchical multi-resolution approaches that
can scale to increasingly large datasets while preserving biologically relevant detail.

In this work, we developed and evaluated three deep neural network architectures for
dendritic shaft and spine segmentation. Our results demonstrate a clear progression in
performance from the baseline DNN1 to the improved models DNN2 and DNN3. The
incorporation of additional geometric and topological features significantly improved both
training convergence and segmentation accuracy, as reflected in lower loss values and higher
IoU scores. In particular, DNN2 achieved the most stable loss convergence, while DNN3

provided the best balance between precision and recall, especially in complex clustering sce-
narios. Notably, DNN3 requires only a single training process, compared to the two-stage
training of DNN2, yet achieves nearly the same level of accuracy, making it a more efficient
alternative.

Despite the promise of this approach, challenges remain in accurately segmenting spines
with dense spine groups, sub-branches, or local curvature variations that resemble shaft
regions. Addressing these limitations will require further refinement of network architec-
tures, the integration of richer geometric and contextual descriptors, and the development
of post-processing strategies to merge fragmented predictions. In addition, scaling to even
larger datasets presents computational challenges that must be addressed through more
efficient algorithms, parallelization, or multi-resolution approaches.

Overall, our findings highlight the potential of feature-enriched deep learning approaches
for robust dendritic spine detection. By improving segmentation accuracy and generaliza-
tion, these models provide a stronger foundation for downstream morphological analyses
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Figure 10. Examples of misclassification encountered during spine segmen-
tation. In the figure, blue indicates the shaft mesh (denoted as sh), while
other colors indicate spine meshes (denoted as spi) that were misclassified.
Panels (A–D) illustrate cases where multiple spines were incorrectly merged
and classified as a single spine. Panel (E) depicts a region of the dendritic
shaft that was mistakenly labeled as a spine, while Panel (F) shows a frac-
tion of a spine that was only partially labeled. These examples highlight the
challenges of accurately separating spines in dense clusters.

and quantitative studies of synaptic connectivity. In the long term, such advances will con-
tribute to a deeper understanding of neuronal circuit organization and the structural basis
of brain function.
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Appendix A. Discrete Gaussian and Mean Curvature

In this section, we briefly review the discrete differential geometry formulation presented
in [30, 31, 39, 46] to derive the Gaussian and the mean curvature of triangular meshes.
Assume the mesh has V vertices and T triangular faces. Each triangular face Tl P T has
vertices denoted by kli, k

l
i`1, and kli`2. These vertices are indexed in a counterclockwise

order around the face, defined as follows:
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Let knextp¨q denote the next vertex in the counterclockwise direction from ¨. Then:

‚ kli is the first vertex.
‚ kli`1 “ knextpk

l
iq is the next vertex in the counterclockwise direction.

‚ kli`2 “ knextpk
l
i`1q is the vertex following kli`1 in the counterclockwise direction.

Then kli`2 “ knextpknextpk
l
iqq .

‚ kli “ knextpk
l
i`2q “ knextpknextpknextpk

l
iqqq completes the cycle.

This leads to the vertex indices cycling according to:

kli “ klpi´1 mod 3q`1,

where pi mod 3q ` 1 cycles through the indices t1, 2, 3u. Moreover, we will denote the set
of indices of the 1-ring neighbors of a vertex with index k by Nk. This set includes the
indices of the vertices whose edges are connected to the vertex Xk:

Nk “ tj | there exists an edge between Xk and Xju.

A.1. Discrete Gaussian Curvature. Let us consider an infinitesimal area A and denote
its diameter by diampAq. Additionally, let AG denote the area of the image of the Gauss
map associated with A. We can express the discrete Gaussian curvature, pκG at a vertex
p “ Xl as:

pκG “
1

A

ż ż

A
κGdA “

1

A
ÿ

pPA
Kp, with Kp “ 2π ´

ÿ

jPNi

θj (5)

where θj are the interior angles at p “ Xi of the triangles meeting there. The term Kp

is known as the defect angle at p. Considering vertices Xj in the 1-ring neighborhood of
p “ Xl, see Fig 11, the angle θj can be computed as:

cos θj “
pXj´1 ´ Xlq ¨ pXj ´ Xlq

∥pXj´1 ´ Xlq ¨ pXj ´ Xlq∥
“

El,j´1 ¨ Eij

∥El,j´1 ¨ Eij∥
,

where El,j “ Xj ´ Xl is the edge of the vertices Xi,Xj .

A.2. Mean curvature. The discrete mean curvature, pκH , at a vertex p is defined as:

pκH “
1

A

ż ż

A
κHdA “

1

A
ÿ

pPA
Hp, 2Hp “

ż ż

A
κHdA.

To compute Hp, we consider two equivalent methods [30,31,39,46]. First, assuming vertices
adjacent to p in cyclic order are Xj ,Xj`1, . . .Xj`n. we have:

2Hp “
ÿ

m“j

El,m ˆ nm`1 ´ El,m ˆ nm

“ ´
ÿ

m“j

El,m ˆ nm,

where nj is the normal vector to the triangle with vertices Xl,Xj´1,Xj :

nj “
pXj´1 ´ Xlq ˆ pXj ´ Xlq

∥pXj´1 ´ Xlq ˆ pXj ´ Xlq∥
“

El,j´1 ˆ El,j

∥El,j´1 ˆ El,j∥
.

Alternatively, the second method involves the integral of the Laplace-Beltrami operator [30]:

2Hp “
ÿ

jPNi

pcotαl,j ` cotβl,jqpXl ´ Xjq,
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xj

xj´1

xj`3

xj`2

xj`1

eij

ei,j´1

θj

θj´1

θj`3

θj`2
θj`1

xi

αij

βij

Figure 11. The graph shows the five triangular meshes of 1-ring neighbors
to the point p “ Xi. It also depicts the incident angles αij and βij opposite
to the edge Eij . The blue area constitutes the barycentric area Ap.

where αl,j and βl,j are the angles opposite edge El,j in the two incident triangles, as shown
in Fig 11.

A.3. Vector Area. In this section, we compute the area A as in (1), (5), the sum of all
the regions that contain p,

A “
ÿ

pPA
Ap.

To do this, Ap is computed using either the conic area or the barycentric formula that we
will describe below. Both methods are equivalent in any case [30].

A.3.1. Conic area. The formula used to compute the vector area is:

A “
1

2

ż ż

A
ndA,

and specifically in the triangle with edge Ei,Ej case, the area is given by:

Aij “
1

2
∥Ei ˆ Ej∥

As the conic area is equal to the third of the area in the 1-ring neighborhood of p, we have:

Ap “
1

3
A “

1

6

ÿ

jPN1piq

∥Ei,j´1 ˆ Eij∥
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A.3.2. Barycenter Area. To compute the barycentric area (represented in blue in Fig 11),
we first find the centroid Cij of each triangle in the 1-ring neighborhood:

Cij “
1

3
pXi ` Xj´1 ` Xjq.

Next, we compute the middle point Xij of each edge Xi,Xj :

Mij “
1

2
pXi ` Xjq.

Then the barycentric area corresponding to the triangle with the vertices Xi,Xj´1,Xj is

Aij “
1

2
∥pMi,j´1 ´ Cijq ˆ pXi ´ Cijq∥ `

1

2
∥pMij ´ Cijq ˆ pXi ´ Cijq∥.

Thus, the barycentric area of the 1-ring neighborhood Ap is:

Ap “
ÿ

jPN1piq

Aij .

Appendix B. Skeletonization

In this section, we describe the skeletonization algorithm applied to a 3D mesh using
Python packages such as trimesh, open3d, and scikit-image. All experiments were
performed in a Python 3.9.6 environment with the following package versions: numpy

(v2.2.6) [13], open3d (v0.18.0) [52], trimesh (v4.6.8) [8], and scikit-image (v0.24.0) [42].
The goal of this algorithm is to extract a simplified, one-voxel-wide medial axis from a
complex dendritic mesh, which can then be used for further geometric analysis and as input
to the DNN.

To perform skeletonization, the first step is to ensure that the mesh is watertight. A
watertight mesh is a closed surface with no gaps, holes, or disconnected edges, which guar-
antees a well-defined interior and exterior. If the input mesh is not watertight, we apply
a wrapping procedure based on Poisson surface reconstruction to generate a closed rep-
resentation. Once the watertight mesh is obtained, the pipeline proceeds through mesh
simplification, voxelization, skeleton extraction, and vertex-to-skeleton mapping.

Mesh Wrapping. To ensure the mesh is watertight and suitable for skeletonization, we
apply a wrapping procedure based on Poisson surface reconstruction [21, 22, 52]. This step
converts the input mesh into a uniformly sampled point cloud, estimates and orients nor-
mals, and then reconstructs a closed surface. The implementation is shown below:

mesh = trimesh.Trimesh(vertices=vertices, faces=faces)

o3d_mesh = o3d.geometry.TriangleMesh()

o3d_mesh.vertices = o3d.utility.Vector3dVector(mesh.vertices)

o3d_mesh.triangles = o3d.utility.Vector3iVector(mesh.faces)

# Sample points uniformly from the surface

pcd = o3d_mesh.sample_points_poisson_disk(

number_of_points=number_of_points

)

# Estimate and orient normals

pcd.estimate_normals(

search_param=o3d.geometry.KDTreeSearchParamHybrid(
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radius=radius, max_nn=max_nn

)

)

pcd.orient_normals_consistent_tangent_plane(k=10)

# Reconstruct a watertight mesh using Poisson surface reconstruction

mesh_poisson, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(

pcd, depth=8

)

vertices = np.asarray(mesh_poisson.vertices)

faces = np.asarray(mesh_poisson.triangles)

Here, we first convert the input vertices and faces into a trimesh.Trimesh object and then
into an Open3D TriangleMesh. From this mesh, we generate a uniformly sampled point
cloud using Poisson disk sampling [49,52] Normals are estimated and consistently oriented
to ensure correct surface reconstruction. Finally, Poisson surface reconstruction produces a
watertight mesh, which is returned as arrays of vertices and faces for subsequent processing.

Mesh Simplification. We apply a mesh simplification algorithm to reduce the size of the
mesh in cases where the number of vertices is very large. This step is crucial for lowering
computational complexity and removing unnecessary geometric detail that may interfere
with accurate skeletonization. The simplification is performed using quadric decimation [12,
52] in Open3D, as shown in the following code:

mesh = trimesh.Trimesh(vertices=vertices, faces=faces)

o3d_mesh = o3d.geometry.TriangleMesh()

o3d_mesh.vertices = o3d.utility.Vector3dVector(mesh.vertices)

o3d_mesh.triangles = o3d.utility.Vector3iVector(mesh.faces)

# Simplify the mesh using quadric decimation

o3d_mesh = o3d_mesh.simplify_quadric_decimation(

target_number_of_triangles=target_number_of_triangles

)

# Convert back to a trimesh object for compatibility

mesh = trimesh.Trimesh(

vertices=np.asarray(o3d_mesh.vertices),

faces=np.asarray(o3d_mesh.triangles)

)

Here, we first create a trimesh.Trimesh object from the input vertices and faces. This
mesh is then converted into an Open3D TriangleMesh, which supports advanced mesh
processing operations. The simplify quadric decimation method reduces the number
of triangles while preserving the overall geometry and removing fine details. Finally, the
simplified mesh is converted back into a trimesh object for compatibility with subsequent
steps in the pipeline.
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Voxelization. Next, we voxelize the simplified mesh to convert it into a discrete 3D grid
representation. This step enables morphological operations such as thinning and skele-
tonization. The voxelization process is controlled by a resolution parameter, which deter-
mines the granularity of the voxel grid:

pitch =(np.median(mesh.edges_unique_length) * 0.25

voxelized = mesh.voxelized(pitch=pitch))

filled = voxelized.fill()

voxels = filled.matrix.astype(bool)

The parameter pitch in mesh.voxelized is determined from the median edge length of the
mesh, scaled by a factor of 0.25. This adaptive choice ties the voxel size to the geometric
detail of the mesh, ensuring that the discretization captures fine structures without produc-
ing an excessively large grid. The fill() method is then applied to close internal cavities,
yielding a watertight solid volume. Finally, the voxel grid is converted into a boolean array,
where each entry indicates whether a voxel is occupied, providing a suitable representation
for subsequent skeletonization.

Appendix C. Spline-Based Interpolation

Given the set of spine vertices, we apply the splprep function from the scipy.interpolate
module in scipy(v0.24.0) [44], which computes a B-spline representation of anN -dimensional
parametric curve. This enables smoothing and interpolation along the dendritic spine skele-
ton [9, 10]. The spline is then evaluated using splev to obtain a dense set of interpolated
points along the curve:

points = spine_vertices.T

tck, u = splprep([points[0], points[1], points[2]],

s=spline_smooth,

k=max(1, min(3, len(points[0]) - 1)))

x_fine, y_fine, z_fine = splev(np.linspace(0, 1, line_num_points), tck)

interpolated_vertices = np.column_stack([x_fine, y_fine, z_fine])

Here, line num points controls the density of interpolation; in our experiments we set
it to 150, and the smoothing factor spline smooth was chosen as 0.03. The resulting
interpolated vertices are ordered sequentially along the spline, which is ensured by the
spline parameterization itself.

Appendix D. Confusion Matrix Analysis

We assess the performance of our model by computing standard classification metrics,
including accuracy, precision, recall, and the F1-score. This section details the computation
process.

To begin, we illustrate the confusion matrix, which provides a detailed comparison be-
tween the predicted classifications and the ground truth annotations. This allows for an
in-depth evaluation of classification performance. In our framework, a group of vertices is
predicted as spine if its IoU with the annotated spine vertices it overlaps exceeds 0.7.

The classification outcomes are defined as follows:

‚ True Positives (TP): Spines correctly identified by the algorithm.
‚ False Negatives (FN): Spines present in the ground truth but missed by the
algorithm.

‚ False Positives (FP): Shaft regions incorrectly classified as spines.
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‚ True Negatives (TN): Shaft regions correctly classified.

Once the confusion matrix is computed, we derive the following performance metrics:
Accuracy. Accuracy measures the proportion of correctly classified vertices:

Accuracy “
TP ` TN

TP ` FP ` FN ` TN
.

Precision. Precision evaluates the reliability of spine predictions:

Precision “
TP

TP ` FP
.

Recall. Recall measures the model’s ability to detect actual spines:

Recall “
TP

TP ` FN
.

F1-score. The F1-score provides a balanced measure of precision and recall:

F1-score “ 2 ˆ
Precision ˆ Recall

Precision ` Recall
.
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